Lighting the Path to Better eDiscovery

Learn how our eDiscovery solutions solve challenges for corporations just like yours.

Filter by content type
Select content type
Filter by trending topics
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Button Text
August 15, 2022
Case Study

Lighthouse Uncovers Key Evidence in Fast-Paced Employee Fraud Investigation

KDI
Lighthouse experts uncover key evidence in just two weeks eliminating 97% of document set. The Challenge Complex internal investigation into potential employee fraud 627K total documents Two-week timeline Key Results for Counsel Confidently completed a complex fraud investigation in just two weeks—without fear of missing critical information Significantly mitigated risk to the company through the identification of previously unknown internal control gaps Lighthouse Key Actions Executed 22 strategic searches, based on expert analysis, to identify all relevant evidence of employee fraud and misconduct Uncovered hidden information, previously unknown to counsel, that revealed additional acts of fraud, embezzlement, and misconduct by targeted employees—as well as potentially problematic internal control gaps Out of 627K documents, identified and delivered, just the 16K documents counsel needed to review in order to conduct a comprehensive fact investigation A Complex Employee Fraud Investigation The audit division of a health insurance provider was pursuing an internal investigation involving potentially concealed employee conflicts of interest with external vendors. The allegations involved possible defrauding of the parent organization through noncompliant contract and billing practices, as well as embezzlement of membership incentives for personal use and gain. With approximately 627K documents to review on an exceptionally tight timeline of two weeks, it was unclear how a comprehensive internal investigation would be completed to ensure proper due diligence. Counsel reached out to Lighthouse for help. Lighthouse Experts Quickly Uncover Key Evidence A small team of Lighthouse information retrieval, legal, data science, and linguistic experts immediately began working with counsel to understand the specific allegations at issue. As part of this work, the Lighthouse team catalogued the various sources of data that needed to be investigated. Based on counsel’s theory of the case, the team devised eight main search themes that would enable them to find instances of fraud or wrongdoing related to the allegations at hand. Over the course of the short two-week engagement, the Lighthouse team completed 22 discrete searches with corresponding deliveries based on expert analysis of the eight priority search themes. Each delivery was distilled down to include only the most inclusive, non-redundant versions of relevant documents so counsel wasn’t bogged down by reviewing a slew of duplicative and/or irrelevant documents. Over the course of searching, Lighthouse experts quickly uncovered new key information that was previously unknown to counsel. This information revealed a picture of internal control gaps used to circumvent company policies, leading to problematic vendor contract arrangements and suspect billing practices. Separately, the Lighthouse team also uncovered details of relevant personal circumstances of targeted employees. This new information shed light on the potential motivation for bad acts, including substantial personal debt, resentment of parent company controls, and personal relationships with superiors in the management reporting structure. Significant Risk Mitigation and Faster Investigation Resolution with Lighthouse In just two weeks, Lighthouse delivered a targeted set of approximately 16K documents, out of a total 627K in the review set. The Lighthouse deliveries represented everything counsel needed to know about the possible fraudulent employee activity—including concealed information that posed significant risk to the company if it had been left undiscovered. The team was able to accomplish this precision through deep subject matter expertise regarding the fraud allegations, comprehensive metadata analysis and emotional content detection, consistent and effective communication with counsel, expert topic-based searching, and exhaustive content deduplication. With Lighthouse’s partnership, counsel quickly gained a thorough understanding of the internal controls, potential fraud, and the embezzlement issues at play—ultimately enabling them to significantly mitigate risk and complete their investigation in just two weeks. Corporate Case Studycase-study; corporate; corporation; ediscovery; fact-finding; document-review; investigations; kdi; key-document-identification; keyword-search; insurance-industry; analytics; ai-and-analytics; fraud-detectionediscovery-review; ai-and-analytics; client-success; lighting-the-path-to-better-ediscoveryCase-Study, client-success, Corporate, Corporation, eDiscovery, fact-finding, document-review, investigations, KDI, key-document-identification, keyword-search, insurance-industry, analytics, ai-and-analytics, fraud-detection, ediscovery-review, ai-and-analytics
November 15, 2021
Case Study

Top-Ten Global Law Firm Overcomes Budgetary Challenges

Self Service
Top ten global law firm revitalizes their eDiscovery program with Lighthouse Managed Services for one predictable, recurring price. What They Needed After years of carrying hefty infrastructure costs and operating with limited access to emerging eDiscovery solutions, one of the ten largest law firms globally decided to look for a new eDiscovery partner that could advance their existing eDiscovery program without the burden of unpredictable, piecemeal pricing and sub-par technology. In particular, the firm was interested in a predictable cost model that would provide them with access to forensics, information governance, and eDiscovery experts as well as innovative new analytic and chat technology. To further complicate things, they had less than two months to migrate all of their existing data to the newly selected vendor before they would have to renew payments with their existing vendor. How We Did It Lighthouse Managed Services was a natural fit for this cutting-edge client. We were selected as the firm’s eDiscovery provider because it was clear we could provide a wide-range of subject-matter experts, access to best-in class technology (particularly our proprietary Spectra ® and SmartSeries ™ , as well as third-party tools like Nuix, Relativity, and Brainspace) and deliver within their tight timeline requirements – all for one predictable, recurring price. After the selection process, Lighthouse immediately tackled the migration of over 130 cases and ~13 TB of the firm’s data from their existing vendor’s environment to the Lighthouse environment within the 45-day requirement. Once the cases were restored, we worked with the firm to develop custom workflows that would allow the new data to flow through active migrated matters seamlessly without loss of deduplication, matter-level settings, or work product. We then developed a comprehensive eDiscovery playbook for our client detailing customized, repeatable, and defensible eDiscovery processes for every stage of the EDRM. We also began technology training sessions to allow our client to effectively utilize their access to tools like Relativity and Brainspace, as well as our proprietary Spectra and SmartSeries technology. Further, Lighthouse developed a custom Relativity template to ensure the user experience in Relativity mirrored the law firm’s workflows for continuity. We scheduled bi-weekly meetings with the Lighthouse Product Development team to keep the firm’s team abreast of new features on the horizon as well as allow the firm an opportunity to influence the overall product roadmap. All of this work was completed under a predictable, recurring pricing model, with custom reports around the firm’s matters and metrics. Results Overall, Lighthouse Managed Services surpassed of all the firm’s expectations – completely revitalizing their eDiscovery program for one predictable pricing model. We successfully completed the entire data migration within 45 days, without any disruption to case teams. Once migrated, our client was elated with the access Lighthouse provided to the best technology on the market, as well as the comprehensive training we offered their teams which enabled them to leverage these tools more effectively. In particular, Spectra enabled the firm to administer matters autonomously while getting data into a review platform at a much greater speed than ever before. Since the time of the launch, this client has started over 90 new matters in Spectra, leveraging the analytics, predictive coding, automated redaction, privilege log creation, and chat messaging tools that make our self-service solution the best in its class. Providing all these comprehensive services under a recurring, predictable processing model allowed this client to successfully manage cost recovery and integrate with their client billing seamlessly. Law Firm Case Studycase-study; ediscovery; self-service, spectra; spectra; analytics; processing; managed-review; document-review; review; law-firmediscovery-review; client-success; lighting-the-path-to-better-ediscoveryCase-Study, client-success, eDiscovery, self-service, spectra, Spectra, analytics, Processing, managed-review, document-review, review, Law-Firm, ediscovery-review
April 1, 2023
Case Study

Saving Millions in a Demanding HSR Second Request

AI & Analytics
Cleary Gottlieb and Lighthouse save millions of dollars and thousands of hours in HSRs Second Request for Fortune 500 company. What They Needed A global Fortune 500 electronics company received an HSR Second Request from the Department of Justice (DOJ), with an extremely aggressive timeline to reach substantial compliance. They engaged Cleary Gottlieb (“Cleary”), a global technology-savvy and innovative law firm with extensive experience handling challenging Second Requests. After Cleary led negotiations with the DOJ to reduce the scope of the investigation, the client was faced with 3.3M documents to review—a significant subset of which included CJK language documents that would require expensive and time-consuming translation. To further complicate matters, the DOJ and Cleary remained engaged in ongoing scope negotiations, resulting in additional data being added throughout the project. Cleary knew that conventional TAR technology was not capable of evaluating a dataset with ever-changing review parameters. How Cleary and Lighthouse Did It CJ Mahoney, counsel and head of the eDiscovery and litigation technology group at Cleary, has extensive experience working on complex HSR Second Requests and has pioneered a number of different analytics-driven methods to reach substantial compliance in the past. Based on prior joint success in innovating new ways to use this technology to improve privilege analytics, CJ immediately saw the potential of Lighthouse’s proprietary AI technology for this challenge. Together, CJ and the Lighthouse data scientists developed a unique training workflow to achieve highly precise responsive prediction results on this challenging dataset. CJ secured the DOJ’s first-ever approval of this workflow with Lighthouse’s proprietary AI technology. Immediately after approval, responsive and privilege analysis and review began simultaneously, enabled by AI technology. For responsiveness, the teams utilized an active learning TAR workflow wherein subject matter experts reviewed a control set of randomly selected documents. After only a few training rounds, the system reached stability and began scoring the remaining dataset for responsiveness. A privilege classifier was built based on 20K previously confirmed privilege calls and applied to score all documents in the privilege workspace. The teams used a combination of the analytic results and privilege terms to identify potential privileged documents. All documents within this set that were scored as “highly likely to be privileged” were immediately routed to reviewers for review and privilege logging. Conversely, documents scored as “unlikely to be privileged” were removed from privilege review after Cleary’s attorneys verified the accuracy of the results using a random sample. Further, the teams used the privilege classifier to identify additional privilege documents that had not hit on privilege terms. As the timeline for substantial compliance approached, negotiations with DOJ regarding relevant timeframes and custodians continued, resulting in the near-constant addition and removal of documents from the dataset. The Lighthouse and Cleary teams managed the ever-changing dataset with ease using the Lighthouse technology and workflow developed by the teams. The Results Using a specialized TAR workflow leveraging advanced AI, the teams delivered highly accurate responsive classification, resulting in more than 500K (or more than 40%) fewer documents requiring further review and production to the DOJ, when compared to legacy TAR tools. By creating a smaller volume of documents requiring production, the amount of privilege and foreign language review was also lessened. For example, 120K fewer foreign language documents were included in the final responsive set compared to legacy TAR tool results. This reduction of review and translation saved approximately $1M alone. For the client, the smaller responsive set meant faster production turnaround times, lower overall costs, and risk mitigation through the decreased chance for inadvertent production of non-responsive documents. The Lighthouse and Cleary partnership resulted in the removal of 200K documents from privilege review beyond what could have been possible through conventional methods, leading to cost savings of $1.2M and time savings of 8K review hours. The team further mitigated risk to the client by identifying privilege documents that did not hit on standard privilege terms. The Cleary and Lighthouse partnership resulted in substantial compliance with the HSR Second Request, increased risk mitigation, faster document review, and remarkable savings for the client. Law Firm Case Studycase-study; antitrust; ediscovery; tar; tar-predictive-coding; law-firm; hsr-second-requests; investigations; mergers; ai-and-analytics; ai-big-data; artificial-intelligence; ai; acquisitions; analytics; predictive-coding; prism; privilege; privilege-review; tech-industryediscovery-review; antitrust; ai-and-analytics; client-success; lighting-the-path-to-better-ediscoveryCase-Study, client-success, Antitrust, eDiscovery, TAR, TAR-Predictive-Coding, Law-Firm, HSR-Second-Requests, investigations, Mergers, ai-and-analytics, AI-Big-Data, artificial-intelligence, AI, Acquisitions, analytics, predictive-coding, Prism, privilege, privilege-review, tech-industry, ediscovery-review, antitrust, ai-and-analytics
May 15, 2023
Case Study

Lighthouse AI and Analytics Drive Unprecedented Savings Across Multiple Matters

Minimizing Re-Review
A global pharmaceutical company leverages Lighthouse's AI-powered analytics to reduce legal spending, increase efficiency, and decrease risk in their matters. Driving Value on Individual Matters The pharmaceutical company first came to Lighthouse for better, faster review for a single matter. Leveraging our unparalleled range of advanced analytics accelerators, our experienced review managers and expert consultants created a custom review workflow that significantly reduced data volume, expedited review, and increased the accuracy of data classification. Individual Matter Review Workflow and Metrics Driving Value Across All Matters Based on the results from the first matter and Lighthouse’s ability to attain even more review efficiency by connecting matters, the company sent additional matters to Lighthouse. Applying advanced AI across the company’s matters resulted in deeper matter insights and upleveled the accuracy of classification models in ways that that would be impossible on one single matter. As each new matter is added, Lighthouse AI identifies data that overlaps with past and concurrent matters. This has two impacts at the outset: 1) significant processing cost savings and unprecedented 2) early insights into new matters. These insights empower counsel to make more strategic, data-backed decisions from the start, leading to extraordinary downstream efficiencies and significantly reduced risk. For example, across five currently connected matters for the company, Lighthouse AI showed that: “Outside Counsel A” email domains were coded privileged over 95% of the time. Emails with a government email domain on the communication were coded privilege 15% of the time. 20K documents of Custodian B were collected and processed across multiple matters, but only 10 documents were ever actually reviewed. Custodian C’s documents were reviewed and produced across multiple matters, with a 0% privilege rate. Lighthouse AI-powered insights and connections supercharge the efficiency, accuracy, and consistency for each subsequent matter. Past attorney work product and metadata are used to reduce the need for eyes-on review and improve the consistency and accuracy of review for responsiveness, privilege, PII, confidentiality, redactions, and more. Driving Value into The Future The efficiency and risk mitigation benefits continue to grow for the pharmaceutical company with each new matter. A true big data technology, the more data Lighthouse advanced analytics ingests, the deeper and more nuanced its decision-making and insights become. Opportunities for data and attorney work product re-use will also grow with each new matter ingested, amplifying the company’s ROI into the future. Corporate Case Studycase-study; ai; ai-and-analytics; analytics; artificial-intelligence; big-data; corporation; corporate; data-analytics; data-re-use; data-reuse; document-review; ediscovery; litigation; prism; privilege; privilege-review; pii; phi; pharmaediscovery-review; ai-and-analytics; client-success; lighting-the-path-to-better-ediscoveryCase-Study, client-success, AI, ai-and-analytics, analytics, artificial-intelligence, Big-Data, Corporation, Corporate, data-analytics, Data-Re-use, Data-Reuse, data-re-use, document-review, eDiscovery, litigation, Prism, privilege, privilege-review, PII, PHI, Pharma, ediscovery-review, ai-and-analytics
May 1, 2023
Case Study

Law Firm Reconstructs Contract History from 92,000 Documents in Three Weeks

KDI
Lighthouse applies language models and human expertise to uncover critical evidence. What We Did Outside counsel for a large construction firm partnered with Lighthouse to identify key documents Lighthouse used its proven iterative process to reduce the review set Collaborative approach continuously incorporated counsel’s insights into model results Key Results 92,000 documents reduced to 871 Key handwritten reports identified using metadata Counsel freed to focus on most important documents Review completed within the 3-week deadline Piecing Together Contract History Without a Guide A large construction company facing a breach-of-contract suit retained outside counsel. Because personnel involved in the contract were no longer employed by the contractor, the law firm needed to reconstruct the agreement’s history based on related documents and communications. However, with just three weeks for review, a keyword search returned more than 90,000 items. The firm needed a way to identify the most critical documents rapidly and accurately. Iterating and Adapting to Unearth Critical Information The Lighthouse team applied advanced technology and review expertise to get the job done. Counsel provided Lighthouse with 15 topics relevant to contractual changes, such as cost, delays, and weather conditions. The team identified an initial set of documents using linguistic modeling. The law firm provided feedback to update the search models. The insights of the experienced attorneys directed the investigation, while Lighthouse people and technology accelerated the discovery of relevant information. As new topic areas emerged, Lighthouse adapted. They identified additional contractors involved in the dispute and concerns such as employee discontent and time-keeping accuracy. As the search proceeded, they captured important documents even though they were outside the original search parameters. Most importantly, Lighthouse used metadata to highlight relevant site incident reports, the contents of which were not searchable. The law firm could review salient reports in depth, discovering key information concerning the disputed contract. Ensuring Response Readiness Over four iterations, Lighthouse escalated 871 key documents related to 16 case themes, in addition to the handwritten incident reports. Lighthouse data retrieval experts highlighted key language in Relativity and coded and prioritized critical documents to expedite review. Using a powerful combination of linguistic models and case experience, Lighthouse shrank the unwieldy dataset to a manageable size and brought the most critical information to the forefront. Counsel could focus their resources on the most relevant data and maximize value for their client. By the end of the third week and final delivery, the attorneys were well-prepared for negotiations and litigation. Law Firm Case Studycase-study; document-review; ediscovery; fact-finding; kdi; key-document-identification; law-firm; ai-and-analytics; analyticsediscovery-review; ai-and-analytics; client-success; lighting-the-path-to-better-ediscoveryCase-Study, client-success, document-review, eDiscovery, fact-finding, KDI, key-document-identification, Law-Firm, ai-and-analytics, analytics, ediscovery-review, ai-and-analytics
April 1, 2023
Case Study

Energy Company Saves Hundreds of Hours with the Right Combination of Technology and Human Expertise

Self Service
A leading energy company gained the flexibility to use self-service technology and full-service expertise as needed, reducing costs and optimizing outcomes. Key Actions A multinational energy company sought eDiscovery efficiency and scalability A seamless combination of self-service Lighthouse Spectra eDiscovery and full-service Lighthouse consulting enabled them to meet a wide range of needs Minor matters can be addressed with low-cost self-service tools A full-service Lighthouse team applies in-depth review expertise to complex matters Key Results $50,000 year-over-year cost reduction 100+ hours freed for matter-critical work Flexibility to meet varying matter requirements Training improved speed and accuracy of self-service eDiscovery What They Needed A multinational energy company wanted to stop relying on an expensive patchwork of third-party eDiscovery providers and adopt a unified, cost-effective strategy. It sought transparent pricing and self-service access to the latest technology, including Relativity and Brainspace. At the same time, it needed a consistent team of experienced eDiscovery and review experts for more in-depth needs. How We Did It Lighthouse listened closely as the company described its desire for greater scalability and efficiency. We proposed a seamless combination of self-service capabilities on the Lighthouse Spectra platform and a dedicated full-service team for complex matters. This proven, flexible approach minimizes cost for minor matters while ensuring available capacity and expertise for complex projects. The Lighthouse Spectra support team accelerated onboarding through technical assistance and training. After completing a proof of concept, the client immediately began ingesting matters into Spectra. At the same time, we assembled a dedicated full-service team to be ready when needed. The Results Using the intuitive, familiar Lighthouse Spectra experience—incorporating Relativity and Brainspace functionality—the client rapidly discovered and reviewed data for internal investigations, subpoenas, and other minor matters. They no longer needed to license and manage Relativity and Brainspace separately, benefitting from a predictable, fixed-fee pricing model that fits their budget and scales to meet their needs. The Lighthouse team simplified data processing and exception handling, freeing resources to focus on strategic aspects of a given matter. As soon as a case warranted, they could triage it to the full-service team directly from the Spectra workspace. The result is a more responsive, cost-effective eDiscovery strategy, saving the company hundreds of hours and almost $50,000. Corporate Case Studycase-study; corporate; corporation; ediscovery; self-service, spectra; spectra; energy-industry; analyticsediscovery-review; client-success; lighting-the-path-to-better-ediscoveryCase-Study, Corporate, Corporation, eDiscovery, self-service, spectra, Spectra, energy-industry, analytics, ediscovery-review
September 15, 2021
Whitepaper

TAR + Advanced AI: The Future Is Now

AI & Analytics
October 14, 2021
eBook

Self-Service eDiscovery Buying Guide

Self Service
May 18, 2022
eBook

Purchasing AI for eDiscovery - New, Now, and Next

AI & Analytics
May 1, 2023
eBook

Is Repeated Review Always Necessary?

Minimizing Re-Review
March 29, 2023
Podcast

Optimizing Review with Your Legal Team, AI, and a Tech-Forward Mindset

KDI
Lighthouse‚Äôs Mary Newman, Executive Director of Managed Review, joins the podcast to explore how adopting a technology-forward mindset can provide better results for document review teams.,   To keep up with the big data challenges in modern review, adopting a technology-enabled approach is critical. Modern technology like AI can help case teams defensibly cull datasets and gain unprecedented early insight into their data. But if downstream document review teams are unable to optimize technology within their workflows and review tasks, many of the early benefits gained by technology can quickly be lost. Lighthouse‚Äôs Mary Newman , Executive Director of Managed Review, joins the podcast to explore how document review teams that adopt a technology-forward mindset can provide better review results now and in the future. This episode's sighting of radical brilliance: An A.I. Pioneer on What We Should Really Fear , New York Times,  December 21, 2022.  If you enjoyed the show, learn more about our speakers and subscribe on lawandcandor.com , rate us wherever you get your podcasts, and join in the conversation on LinkedIn and  Twitter .  , ai-and-analytics; legal-operations; lighting-the-way-for-review; lighting-the-path-to-better-review; lighting-the-path-to-better-ediscovery, review, ai/big data, podcast, managed review, ai-and-analytics, legal-operations, review; ai-big-data; podcast; managed-review
March 29, 2023
Podcast

Why Your Data is Key to Reducing Risk and Increasing Efficiency During Investigations and Litigation

Minimizing Re-Review
Cassie Blum, Senior Director of Review Consulting at Lighthouse, discusses how to implement a data reuse strategy, including what technology and workflows can optimize its success.,   Handling large volumes of data during an investigation or litigation can be anxiety-inducing for legal teams. Corporate datasets can become a minefield of sensitive, privileged, and proprietary information that legal teams must identify as quickly as possible in order to mitigate risk. Ironically, corporate data also provides a key to speeding up and improving this process. By reusing metadata and work product from past matters in combination with advanced analytics, organizations can significantly reduce risk and increase efficiency during the review process. Law & Candor welcomes Cassie Blum , Senior Director of Review Consulting at Lighthouse, to discuss how to implement this data strategy, including what technology and workflows can optimize its success. This episode's sighting of radical brilliance:  7 Ways to be a more inclusive colleague ,  Fast Company , February 24, 2023. If you enjoyed the show, learn more about our speakers and subscribe on lawandcandor.com , rate us wherever you get your podcasts, and join in the conversation on LinkedIn and  Twitter . , chat-and-collaboration-data; ediscovery-review; lighting-the-path-to-better-ediscovery, podcast, data reuse, document review, chat-and-collaboration-data, ediscovery-review, podcast; data-reuse; document-review
December 15, 2022
Podcast

Review Analytics for a New Era

AI & Analytics
Law & Candor welcomes Kara Ricupero, Associate General Counsel at eBay, for a conversation about how analytics and reimagining review can help solve data challenges and advance business imperatives., In episode two, we introduce our new co-host Paige Hunt , Vice President of Global Discovery Solutions at Lighthouse, who will be joining Bill Mariano as our guide through the legal technology revolution. In their first Sighting of Radical Brilliance together they chat about an article in Wired that explores the rise of the AI meme machine, DALL-E Mini . Then, Paige and Bill interview Kara Ricupero , Associate General Counsel and Head of Global Information Governance, eDiscovery, and Legal Analytics at eBay. They explore how a dynamic combination of new technology and human expertise is helping to usher in new approaches to review and analytics that can help tackle modern data challenges. Other questions they dive into, include: How did you identify the kind of advanced technology needed for modern data challenges?   Partnering with the right people and experts across the business to utilize technology and insights seems to be a big part of the equation. How did you work with other stakeholders to leverage analytics?  With new analytics and intelligence, has it changed how you approach review on matters or other processes? How do you think utilizing analytics will evolve as data and review continue to change? What kinds of problems do you think it can help solve?  If you enjoyed the show, learn more about our speakers and subscribe on the  podcast homepage , listen and rate the show wherever you get your podcasts, and join in the conversation on  Twitter .  , ai-and-analytics; ediscovery-review; lighting-the-way-for-review; lighting-the-path-to-better-review; lighting-the-path-to-better-ediscovery, review, data-re-use, ai/big data, podcast, ai-and-analytics, ediscovery-review, review; data-re-use; ai-big-data; podcast
December 15, 2022
Podcast

Investigative Power: Utilizing Self Service Solutions for Internal Investigations

Self Service
Our hosts chat with Justin Van Alstyne, Senior Corporate Counsel at T-Mobile, about best practices for handling internal investigations including the self service tools that have been most effective., Paige and Bill start the show with new and exciting research from MIT Sloan on artificial intelligence and machine learning.  Next, their interview with  Justin Van Alstyne , Senior Corporate Counsel, Discovery and Information Governance at T-Mobile. They dive into internal investigations, including how a simple, on-demand software solution can offer the scalability and flexibility teams need to manage investigations with varying amounts of data. Some other questions they explore are: How we collaborate and work has changed immensely over the past few years and that evolution doesn‚Äôt appear to be slowing down. How have new tools and data sources complicated conducting internal investigations?  With organizations encountering investigations of different sizes and degree, what workflows or approaches have you found are most flexible to respond to this variability? Along with process, technology is another key part of the equation. When choosing the right technology for internal investigations, what are some of your high-priority considerations? Are there any features that are must-haves? For people contemplating deploying a self service solution, what advice do you give to ensure your team has the right level of expertise and technology to handle their internal investigations at scale? If you enjoyed the show, learn more about our speakers and subscribe on the  podcast homepage , rate us wherever you get your podcasts, and join in the conversation on  Twitter .  , ediscovery-review; ai-and-analytics; lighting-the-path-to-better-ediscovery, self-service, spectra, podcast, ediscovery-and-review, ai-and-analytics, self-service, spectra; podcast
December 20, 2022
Blog

Why You Need a Specialized Key Document Search Team in Multi-District Litigation

KDI
Few things are more ominous to a company’s in-house counsel than the prospect of facing thousands of individual lawsuits across 30-40 jurisdictions, alongside various other companies in a multi-district litigation (MDL) proceeding. In-house teams can, of course, lean on the expertise of external law firms that have strong backgrounds in MDLs. However, even for experienced law firms, coordinating an individual company’s legal defense with other law firms and in-house counsel within a joint defense group (JDG) can be a Sisyphean task. But this coordination is integral to achieving the best possible outcome for each company, especially when it comes to identifying and sharing the documents that will drive the JDG’s litigation strategies. An MDL can involve millions of documents, emanating from multiple companies and their subsidiaries. Buried somewhere within that complicated web of data is a small number of key documents that tell the story of what actually happened—the documents that explain the “who, what, where, and when” of the litigation. Identifying those documents is critical so that JDG counsel can understand the role each company played (or didn’t play) in the plaintiffs’ allegations, and then craft and prepare their defense accordingly. And the faster those documents are identified and shared across a JDG, the better and more effective that defense strategy and preparation will be. In short: A strong and coordinated key document search strategy that is specific to the unique ecosystem of an MDL is crucial for an effective defense. Ineffective search strategies leave litigators out at sea Unfortunately, outdated or ineffective search methodologies are often still the norm rather than the exception. The two most common strategies were created to find key documents in smaller, insular litigation proceedings involving one company. They are also relics of a time when average data volumes involved in litigation were much smaller. Those two strategies are: one, relying on linear document review teams to surface key documents as they review documents one by one in preparation for production, and, two, relying on attorneys from the JDG’s counsel teams to arbitrarily search datasets using whatever search terms they think may be effective. Let’s take a deeper look at each of these methodologies and why they are both ineffective and expensive: Relying on linear review teams to find key documents. Traditional linear review teams are often made up of dozens or even hundreds of contract attorneys with no coordination around key document searches and little or no day-to-day communication with JDG counsel. Each attorney reviewer may also only see a tiny fraction of the entire dataset and have a skewed view of what documents are truly important to the JDG’s strategy. The results are often both overinclusive (with thousands of routine documents labeled “key” or “hot” that JDG counsel must wade through) and underinclusive (with truly important documents left unflagged and unnoticed by review teams). This search method is also painfully slow. Key documents are only incidentally surfaced by the review team if they notice them while performing their primary responsibility—responsive review. Relying on attorneys from JDG counsel teams. Relying on individual attorneys from the JDG’s outside counsel to perform keyword searches to find key documents is also ineffective and wastefully expensive. Without a very specific, coordinated search plan, attorneys are left running whatever searches each thinks might be effective. This strategy inevitably will risk plaintiffs finding critical documents first, leaving defense deposition witnesses unprepared and susceptible to ambush. This search methodology is also a dysfunctional use of attorney time and legal spend. Merits counsel’s value is their legal analytic skillset—i.e., their ability to craft the best litigation strategy with the evidence at hand. Most attorneys are not technologists or linguistic experts. Asking highly skilled attorneys to craft the most effective technological and linguistic data search is a bit like asking an award-winning sushi chef to jump onboard a fishing vessel, navigate to the best fishing spot, select the best bait, and reel in the fish the chef will ultimately serve. Both jobs require a highly specialized skillset and are essential to the end goal of delighting a client with an excellent meal. But paying the chef to perform the fisherman’s job would be ineffective and a waste of the chef’s skillset and time. Both of these search strategies are also reactive rather than proactive, which drives up legal costs, wastes valuable resources, and worsens outcomes for each company in a JDG. A better approach to MDL preparation and strategy Fortunately, there is a more proactive, cost-efficient, holistic, and effective way to identify the key documents in an MDL environment. It involves engaging a small team of highly trained linguists and technology search experts, who can leverage purpose-built technology to find the best documents to prepare effective litigation strategies across the entire MDL data landscape. A specialized team with this makeup provides a number of key advantages: Precise searches and results—Linguistic experts can carefully craft narrow searches that consider the nuance of human language to more effectively find key documents. A specialized search team can also employ thematic search strategies across every jurisdiction. This provides counsel with a critical high-level overview of the evidence that lies within the data for each litigation, enabling each company to make better, more informed decisions much earlier in the process.Quick access to key documents—Technology experts leveraging advanced AI and analytics can ensure potentially damaging documents bubble up to the surface—even in the absence of specific requests from JDG counsel. Compare this to waiting for those documents to be found by contract attorneys as they review an endless stream of documents, one by one, during the linear review process. A flexible offensive and defensive litigation strategy—A team of this size and composition can react more nimbly, circulate information faster, and respond quicker to changes in litigation strategy. For example, once counsel has an overview of the important facts, the search team can begin to narrow their focus to arm counsel with the data needed for both offensive and defensive litigation strategies. The team will be incredibly adept at analyzing incoming data provided by opposing counsel—flagging any gaps and raising potential deposition targets. Defensively, they can be used by counsel to get ahead of any potentially damaging evidence and identify every document that bolsters potential defense arguments. An expert partner throughout the process—A centralized search team is able to act as a coordinated “search desk” for all involved counsel, as well as a repository and “source of truth” for institutional knowledge across every jurisdiction. As litigation progresses, the search team becomes the right hand of counsel—using their knowledge and expertise to prepare deposition and witness preparation binders and performing ad-hoc searches for counsel. Once a matter goes to trial in one jurisdiction, the search team can use the information gleaned from that proceeding to inform their searches and strategy for the next case. Conclusion Facing a complex MDL is an undoubtedly daunting process for any company. But successfully navigating this challenge will be downright impossible if counsel is unable to quickly find and understand the key facts and issues that lie buried within massive volumes of data. Traditional key document search methodologies are no longer effective at providing that information to counsel. For a better outcome, companies should look for small, specialized search teams, made up of linguistic and technology experts. These teams will be able to build a scalable and effective search strategy tailormade for the unique data ecosystem of a large MDL—thereby proactively providing counsel with the evidence needed to achieve the best possible outcome for each company. lighting-the-way-for-review; ai-and-analytics; ediscovery-review; lighting-the-path-to-better-review; lighting-the-path-to-better-ediscoveryreview, blog, ai, ai-and-analytics, ediscovery-reviewreview; blog; aikdisarah moran
October 12, 2021
Blog

What Attorneys Should Know About Advanced AI in eDiscovery: A Brief Discussion

AI & Analytics
What does Artificial Intelligence (AI) mean to you? In the non-legal space, AI has taken a prominent role, influencing almost every facet of our day-to-day life – from how we socialize, to our medical care, to how we eat, to what we wear, and even how we choose our partners.In the eDiscovery space, AI has played a much more discreet but nonetheless important role. Its limited adoption so far is due, in part, to the fact that the legal industry tends to be much more risk averse than other industries. The innate trust we have placed in more advanced forms of AI technology in the non-legal world to help guide our decision making has not carried over to eDiscovery – partly because attorneys often feel that they don’t have the requisite technological expertise to explain the results to opposing counsel or judges. The result: most attorneys performing eDiscovery tasks are either not using AI technology at all or are using AI technology that is generations older than the technology currently being used in other industries. All this despite the fact that attorneys facing discovery requests today must regularly analyze mountains of complicated data under tight deadlines.One of the most prominent roles AI currently plays in eDiscovery is within technology assisted review (TAR). TAR uses “supervised” machine learning algorithms to classify documents for responsiveness based on human input. This classification allows attorneys to prioritize the most important documents for human review and, often, reduce the number of documents that need to be reviewed by humans. TAR has proven to be especially helpful in HSR Second Requests and other matters with demanding deadlines. However, the simple machine learning technology behind TAR is already decades old and has not been updated, even as AI technology has significantly advanced. This older AI technology is quickly becoming incapable of handing modern datasets, which are infinitely more voluminous and complicated than they were even five years ago.Because the legal industry is slower to adopt more advanced AI technology, many attorneys have a muddled view of what advanced AI technology exists, how it works, and how that technology can assist attorneys in eDiscovery today. That confusion becomes a significant detriment to modern attorneys, who must start being more comfortable with adopting and utilizing the more advanced AI tools available today if they stand a chance overcoming the increasingly complicated data challenges in eDiscovery. This confusion behind AI can also lead to a vicious cycle that further slows down technology adoption in the legal space: attorneys who lack confidence in their ability to understand available AI technology subsequently resist adoption of that technology; that lack of adoption then puts them even further behind the technology learning curve as technology continues to evolve. This is where legal technology companies with dedicated technology services can help. A good legal technology company will have staff on hand whose entire job it is to evaluate new technology and test its application and accuracy within modern datasets. Thus, an attorney who has no interest in becoming a technology expert just needs to be proficient enough to know the type of tools that might fit their needs – the right technology vendor can do the rest. Technology experts can also step in to help provide detailed explanations of how the technology works to stakeholders, as well as verify the outcome to skeptical opposing counsel and judges. Moreover, a good technology provider can also supply expert resources to perform much of the day-to-day utilization of the tool. In essence, a good legal technology vendor can become a trusted part of any attorney team – allowing attorneys to remain focused on the substantive legal issues they are facing. With that in mind, it’s important to “demystify” some common AI concepts used within the eDiscovery space and explain the benefits more advanced forms of AI technology can provide within eDiscovery. Once comfortable with the information provided here, readers can take a deeper dive into the advantages of leveraging advanced AI within TAR workflows in our full white paper – “TAR + Advanced AI: The Future is Now.” Armed with this information, attorneys can begin a more thoughtful conversation with stakeholders and legal technology companies regarding how to move forward with more advanced AI technology within their own practice.Demystifying AI Jargon in eDiscoveryAt its most basic, AI refers to the science of making intelligent machines – ones that can perform tasks traditionally performed by human beings. Therefore, AI is a broad field that encompasses many subfields and branches. The most relevant to eDiscovery are machine learning, deep learning, and natural language processing (NLP). As noted above, the technology behind legacy TAR workflows is supervised machine learning. Supervised machine learning uses human input to mimic the way humans learn through algorithms that are trained to make classifications and predictions. In contrast, deep learning eliminates some of that human training by automating the feature extraction process, which enables it to tackle larger datasets. NLP is a separate branch of machine learning that can understand text in context (in effect, it can better understand language the way humans understand it).The difference between the AI technology in legacy TAR workflows and more advanced AI tools lies in the fact that advanced AI tools use a combination of AI subsets and branches (machine learning, deep learning, and NLP) rather than just the supervised machine learning used in TAR. Understanding the Benefits of Advanced AIThis combination of AI subsets and branches used in advanced AI tools provides additional capabilities that are increasingly necessary to tackle modern datasets. These tools not only utilize the statistical prediction that supervised machine learning produces (which enables traditional TAR workflows), but also include the language and contextual understanding that deep learning and NLP provide. Deep learning and NLP technology also enable more advanced tools to look at all angles of a document (including metadata, data source, recipients, etc.) when making a prediction, rather than relying solely on text. Taking all context into consideration is increasingly important, especially when making privilege predictions that lead to expensive attorney review if a document is flagged for privilege. For example, with traditional TAR, the word “judge” in the phrases, “I don’t think the judge will like this!” on an email thread between two attorneys and, “Don’t judge me!” on a chat thread with 60 people regarding a fantasy football league will be classified the same way – because statistically, there is not much difference between how the word “judge” is placed within both sentences. However, newer tools that combine supervised machine learning with deep learning and NLP can learn the context of when the word “judge” is used as a noun (i.e., an adjudicator in a court of law) within an email thread with a small number of recipients versus when the word is being used as a verb on an informal chat thread with many recipients. The context of the data source and how words are used matters, and an advanced AI tool that leverages a combination of technologies can better understand that context.Using Advanced AI with TAROne common misconception regarding using newer, more advanced AI tools is that old workflows and models must go out the window. This is simply not true. While there may be some changes to review workflows due to the added efficiency generated by advanced AI tools (the ability to conduct privilege analysis simultaneously with responsive analysis, for example), attorneys can still use the traditional TAR 1.0 and TAR 2.0 workflows they are familiar with in combination with more advanced AI tools. Attorneys can still direct subject matter experts or reviewers to code documents, and the AI tool will learn from those decisions and predictive responsiveness, privilege, etc.The difference will be in the results. A more advanced AI tool’s predictions regarding privilege and responsiveness will be more accurate due to its ability to take nuance and context into consideration –leading to lower review costs and more accurate productions.ConclusionMany attorneys are still hesitant to move away from the older, AI eDiscovery tools they have used for the last decade. But today’s larger, more complicated datasets require more advanced AI tools. Attorneys who fear broadening their technology toolbox to include more advanced AI may find themselves struggling to stay within eDiscovery budgets, spending more time on finding and less time strategizing – and possibly even falling behind on their discovery obligations.But this fear and hesitancy can be overcome with education, transparency, and support from legal technology companies. Attorneys should look for the right technology partner who not only offers access to more advanced AI tools, but also provides implementation support and expert advisory services to help explain the technology and results to other stakeholders, opposing counsel, and judges.To learn more about the advantages of leveraging advanced AI within TAR workflows, download our white paper, “TAR + Advanced AI: The Future is Now.” And to discuss this topic more, feel free to connect with me at smoran@lighthouseglobal.com.ai-and-analytics; chat-and-collaboration-data; ediscovery-review; lighting-the-path-to-better-ediscoveryreview, ai-big-data, tar-predictive-coding, blog, ai-and-analytics, chat-and-collaboration-data, ediscovery-review,review; ai-big-data; tar-predictive-coding; blogai-analyticssarah moran
June 20, 2023
Blog

Three Ways to Use eDiscovery Technology to Reduce Repeated Review

Minimizing Re-Review
By now, legal teams facing discovery are aware of many of the common technology and technology-enabled workflows used to increase the efficiency of document review on a single matter. But as data volumes grow and legal budgets shrink, legal teams must begin to think beyond a “matter-by-matter” approach. They must start applying technology more innovatively to create efficiencies across matters to minimize the burden of repeatedly reviewing the same documents again and again. Fortunately, many common technology-enabled review workflows (e.g., technology assisted review (TAR), advanced search guided by linguistic experts, and AI-powered review analytics) can help teams apply work product and insights from past matters to current and future matters. This not only saves time but also increases consistency and lowers the risk of inadvertent disclosures and cumbersome clawbacks.The opportunity to reduce repeated review is quite large, both because the problem is rampant and the technology that can help solve it is underutilized. A 2022 survey by the ABA showed that “predictive coding” is the least common application of eDiscovery software, used by only one in five law firms. In fact, 73% of respondents said they don’t know what predictive coding is (we explain it below). As document review continues to grow in complexity, and budget and other constraints apply pressure from other directions, more organizations should consider taking advantage of everything that technology has to offer.Repeated review is a large and familiar burdenRepeated review is baked into the status quo. Matters spanning multiple jurisdictions, civil litigations tied to government investigations, and matters involving the same or related IP are just a few examples in which the same documents could come up for review multiple times. Instead of looking across matters holistically, legal teams often feel obligated to roll up their sleeves, lower their heads, and review the same documents all over again—even when relevancy overlaps and for categories of information that remain relatively static across matters (privilege, trade secret, personally identifiable information (PII), etc.). This has obvious consequences for time and cost. The time invested on reviewing documents for privilege in a current matter, for example, becomes time saved on future matters involving those same documents. Risk is a factor as well. A document classified as privileged, or that contains PII or another sensitive category, in one matter should be classified the same way in the next one. But without a record of past matters, attorneys start over from scratch each time, which opens the door to inconsistency. And while it’s certainly possible to undo the mistake of producing sensitive documents, it can be quite time-consuming and expensive.Rejecting the status quo While the burden and risks associated with repeated review are felt every day, few legal teams and professionals are searching for a solution. Those willing to look beyond the status quo, however, will see that repeated review isn’t actually necessary, at least not to the degree that it’s done today. We also find that the keys to reducing repeated review lie in technology that many teams already use or have access to.Reusing work product from TAR and CAL workflows TAR 1.0, TAR 2.0, and Continuous Active Learning (CAL) workflows use machine learning technology to search and classify documents based on human input and their own ability to learn and recognize patterns. This is called predictive coding and it’s most often used to prioritize responsive documents for human review. The parameters for responsiveness change with the topics of each matter, so it’s not always possible to reuse those classifications on other matters. TAR and CAL tools can also be effective at making classifications around privilege, PII, and junk documents, which are not redefined from matter to matter. If a document was junk last time (say company logos attached to emails, blank attachments, etc.) it’s going to be junk this time too. Therefore, reusing these classifications made by technology on one matter can save legal teams even more time in the future. Refining review with linguistic expertsLinguistic experts add an extra layer of nuance to document review technology that makes them more precise and effective at classification. They develop complex criteria, based on intricate rules of syntax and language, to search and identify documents in a more targeted way than TAR and CAL tools.They can also help reduce repeated review by conducting bespoke searches informed by past matters. This process is more hands-on than using TAR and CAL tools; human linguists take lessons learned from one matter and incorporate them into their work on a related matter. It’s also more refined, so it can help in ways that TAR and CAL tools can’t.Litigation related to off-label drug use offers a good example. A company might have multiple matters tied to different drugs, making relevance unique for each matter. In this scenario, linguistics experts can identify linguistic markers that show how sales reps communicated with healthcare providers within that company. Then when the next off-label document review project begins, documents with those identifiers can be segregated for faster review. In this way, work from linguistic experts in one matter can help improve efficiency and minimize first-level review work on new matters. Apply learnings across matters using AI Review tools built on AI can reduce repeated review by classifying documents based on how they were classified before. AI tools can act as a “central mind” across matters, using past decisions on company data to make highly precise classifications on new matters. The more matters the AI is used on, the more precise its classifications become. The beauty here is that it applies to any amount of overlap across matters. The AI will recognize any documents that it has reviewed previously and will resurface their past classifications.Some AI tools can even retain the decision on past documents and associate it with a unique hash tag, so that it can tell reviewers how the same or similar documents were coded in previous matters—without the concern of over-retaining documents from past matters. Curious to challenge your status quo?TAR, AI, and other solutions can be invaluable parts of a legal team’s effort to curb repeated review — but they’re not the only part. In fact, the most important factor is a team’s mindset. It takes forethought and commitment to depart from the status quo, especially when it involves unfamiliar tools or strategies.The benefits can be profound, and the road to achieving them may be more accessible than you think.Find tips for starting small, as well as more information about how and why to address the burden of repeated review, in our deep dive on the subject.ai-and-analytics; ediscovery-review; lighting-the-path-to-better-ediscoveryreview, ai-big-data, blog, ai-and-analytics, ediscovery-reviewreview; ai-big-data; blogminimizing-re-reviewsarah moran
January 13, 2022
Blog

Purchasing AI for eDiscovery: Tips and Best Practices

AI & Analytics
eDiscovery is currently undergoing a fundamental sea change, including how we think about data governance and the EDRM. Linear review and older analytic tools are quickly becoming outdated and unable to handle modern datasets, i.e., eDiscovery datasets that are not only more voluminous than ever before, but also more complicated – emanating from an ever-evolving list of new data sources and steeped in variety of text and non-text-based languages (foreign language, slang, emojis, video, etc.).Fortunately, technological advancements in AI have led to a new class of eDiscovery tools that are purpose built to handle “big data.” These tools can more accurately identify and classify responsiveness, privileged, and sensitive information, parse multiple formats, and even provide attorneys with data insights gleaned from an organization’s entire legal portfolio.This is great news for legal practitioners who are faced with reviewing and analyzing these more challenging datasets. However, evaluating and selecting the right AI technology can still present its own unique hurdles and complexities. The intense purchasing process can raise questions like: Is all AI the same? If not, what is the difference between AI-based tools? What features are right for my organization or firm? And once I’ve found a tool I like, how do I make the case for purchasing it to my firm or organization?These are all tough questions and can lead you down a rabbit hole of research and never-ending discussions with technology and eDiscovery vendors. However, the right preparation can make a world of difference. Leveraging the below steps will help you simplify the process, obtain answers to your fundamental questions, and ultimately select the right technology that will help you overcome your eDiscovery challenges and up level your eDiscovery program.1. Familiarize Yourself with Subsets of AI in eDiscoveryNewer AI technology is significantly better at tackling today’s modern eDiscovery datasets than legacy technology. It can also provide legal teams with previously unheard-of data insights, improving efficiency and accuracy while enabling more data-driven strategic decisions. However, not all technology is the same – even if technology providers tend to generally refer to it all as “AI.” There are many different subsets of AI technology, and each may have vastly different capabilities and benefits. It’s important to understand what subsets of AI can provide the benefits you’re looking for, and how those different technology subsets can work together. For example, Natural Language Processing (NLP) enables an AI-based tool to understand text the same way that humans understand it – thus providing much more accurate classifications results – while AI tools that leverage deep learning technology together with NLP are better able to handle large and complex datasets more efficiently and accurately. Other subsets of AI give tools the ability to re-use data across matters as well as across entire legal portfolios. Learning more about each subset and the capability and benefits they can provide before talking to eDiscovery vendors will give you the knowledge base necessary to narrow down the tools that will meet your specific needs. 2. Learn How to Measure AI ROIAs a partner to human reviewers, advanced AI tools can provide a powerful return on investment (ROI). Understanding how to measure this ROI will enable you to ask the right questions during the purchasing process to ensure that you select a tool that aligns with your organization or law firm’s priorities. For example, if your team struggles with review accuracy when utilizing your current tools and workflows, you’ll want to ensure that the tool you purchase is quantifiably more accurate at classifying documents for responsiveness, privilege, sensitive information, etc. The same will be true for other ROI metrics that are important to your team, such as lower overall eDiscovery spend or increased review efficiency.These metrics will also help you build a strong business case to purchase your chosen tool once you’ve selected it, as well as a verifiable way to confirm the tool is performing the way you want it to after purchase.3. Come Prepared with a List of QuestionsIt’s easy to get swept up in conversations about tools and solutions that end without the metrics you need. A simple way to control the conversation and ensure you walk away with the information you need is to prepare a thorough list of questions that reflect your priorities. Also be sure to have a method to record each vendor’s response to your questions. A list of standard questions will keep conversations more productive and provide a way to easily contrast and compare the technology you’re evaluating. Ensure that you also ask for quantifiable metrics and examples to back up responses, as well as references from clients. This will help you verify that vendor responses are backed by data and evidence.4. Know the Pitfalls of AI Adoption—and How to Avoid ThemIt won’t matter how much you understand AI capabilities, whether you’ve asked the right questions, or whether you understand how to measure ROI, if you don’t know how to avoid common AI pitfalls. Even the best technology will fail to return the desired results if it’s not implemented properly or effectively. For example, there are some workflows that work best with advanced AI, while other workflows may fail to return the best results possible. Knowing this type of information ahead of time will help you get your team on board early, ensure a smooth implementation, and enable you to unlock the full potential of the technology.These tips will help you better prepare for the AI purchasing process. For more information, be sure to download our guide to buying AI. This comprehensive guide offers a deep dive into tips and tactics that will help you fully evaluate potential eDiscovery AI tools to ensure you select the best tool for your needs. The guide can also be used to reevaluate your current AI and analytic eDiscovery tools to confirm you’re using the best available technology to meet today’s eDiscovery challenges.lighting-the-way-for-review; ai-and-analytics; ediscovery-review; lighting-the-path-to-better-review; lighting-the-path-to-better-ediscoveryreview, ai-big-data, blog, ai-and-analytics, ediscovery-reviewreview; ai-big-data; blogai-analyticssarah moran
November 16, 2022
Blog

In Flex: Utilizing Hybrid Solutions for Today's eDiscovery Challenges

Self Service
As eDiscovery becomes more complex, organizations are turning to hybrid solutions that give them the flexibility to scale projects up or down as needed. Hybrid solutions offer the best of both worlds: the ability to use self-service, spectra for small matters or full-service for large and complex matters. This flexibility is essential in today's litigation landscape, where the volume and complexity of data can change rapidly. Hybrid solutions give organizations the agility to respond quickly and effectively to changing eDiscovery needs. In a recent webinar, I discussed hybrid eDiscovery solutions with Jennifer Allen, eDiscovery Case Manager at Meta, and Justin Van Alstyne, Senior Corporate Counsel, Discovery and Information Governance at T-Mobile. We explored some of the most pressing eDiscovery challenges, including data complexity, staffing, and implementation. We also discussed scenarios that require flexible solutions, keys to implementing new technology, and the future of eDiscovery solutions. Here are my key takeaways from our conversation.Current eDiscovery challengesA hybrid approach can transition between an internally managed solution and a full-service solution, depending on the nuances and unique challenges of the matter. This type of solution can be beneficial in situations where the exact needs of the case are not known at the outset. A few challenges come into play when deciding your approach to a project:Data volume: When dealing with large data sets, being able to scale is critical. If the data for a matter balloons beyond the capacity of an internal team, having experts available is critical to avoid any disruptions in workflows or errors.Data predictability: When it comes to analyzing data, consistency and predictability can greatly inform your approach to analysis. Standard data allows for more flexibility, as there is an expectation that the results will fall within a certain range. However, to ensure accurate representation, caution must be exercised when dealing with complicated big data. It is important to consider variables, potential outliers, and how the data is compiled and presented. Internal capacity: It's important to monitor and manage the internal workload of your team closely. When everyone is already at their maximum capacity, it can be tempting to outsource various tasks to a full-service project manager. Technology can be a more cost-effective and efficient method for filling the gaps.The right talent and knowledge Finding and utilizing the right team in today's competitive labor market can be difficult. A hybrid solution can help with this by providing a scalable way to get the most out of your workforce. With a hybrid solution, you have the option to staff fewer technical positions and provide training on the data or matters your organization most frequently encounters with your existing team. But, if you have a highly complicated data source, you can still staff an expert who knows how to handle that data. An expert can shepherd the data into a solution, do extensive quality control to ensure that you marry up the family relationships correctly, and give confidence that you're not making a mistake.To assuage concerns about the solution being misused, technology partners can provide training and education, and limit access to who can create, edit, or delete projects within the tool. This training helps to upskill your team by teaching them more advanced technology, which leads to more efficient and sophisticated approaches to matters.Flexible solutions for different mattersA hybrid solution can be a great option for a variety of matters, including internal investigations, enforcement matters, third-party subpoenas, and case assessments. These matters can benefit from the flexibility and scalability provided by a hybrid approach.When determining if a matter needs full-service treatment, it's important to consider the specific requirements at hand. Questions around the volume and frequency of data production, the types of data involved, and the necessary metadata and tagging all play a role in determining if a self-service, spectra approach will suffice or if full-service support is needed. It's always important to consider the timeline and potential challenges during the transition. Using experience with similar cases can provide valuable insight into what might work best in your situation.Keys for implementing eDiscovery solutionsThere are a few critical components to keep in mind when evaluating which eDiscovery solutions and tools are right for your business now, and as it grows.Training team: With any new solution or product there may be some trepidation around learning and adoption. Leverage vendor support to answer your questions and help train your team. Keep them involved in your communications with outside counsel and internal teams so you can receive suggestions and assistance if needed. As users get more experience with the software, they will begin to feel empowered and understand how the tool can be used most effectively. Scalability: One of the most significant hurdles to scaling big eDiscovery projects is the amount of data that needs to be processed. With new data sources, tighter deadlines, and more urgency, it can be difficult to keep up with the demand. Using a fully manual process or a project management solution has a greater chance for error or increased cost. A flexible solution can help your team keep up with increasing data volumes while reducing costs and errors. Automation: Automating repetitive tasks and workflows can dramatically speed up data collection and analysis. This can be a huge advantage when investigating large, complex cases. Additionally, automation can help to ensure that data is collected and parsed consistently.Cost-benefit analysis: Through support and training with a self-service, spectra tool, you can work to reduce the number of support requests. This can minimize the time your team spends on each request and ultimately lowers the cost of providing support. The cost reduction of self-service, spectra tools is often substantial, and it can have a positive snowball effect as your team becomes more skilled at the task. You can reinvest those savings into other business areas with less need for oversight and fewer mistakes. The future state of eDiscovery solutionsThe proliferation of DIY eDiscovery solutions has made it easier for organizations to take control of their data and manage their cases in-house. As AI technology, including continuous active learning (CAL) and technology-assisted review (TAR), continues to evolve, teams will better understand how to handle the growing demands of data and implement hybrid tools. As we move into the future of eDiscovery and legal technology, DIY models will play an increasingly important role in supporting business needs.ediscovery-review; ai-and-analytics; lighting-the-path-to-better-ediscoveryself-service, spectra, blog, ediscovery-review, ai-and-analyticsself-service, spectra; blogself-service, spectrapaige hunt
January 27, 2022
Blog

Deploying Modern Analytics for Today’s Critical Data Challenges in eDiscovery

AI & Analytics
Artificial intelligence (AI) has proliferated across industries, in popular culture, and in the legal space. But what does AI really mean? One way to look at it is in reference to technology that lets lawyers and organizations efficiently manage massive quantities of data that no one’s been able to analyze and understand before.While AI tools are no longer brand new, they’re still evolving, and so is the industry’s comfort and trust in them. To look deeper into the technology available and how lawyers can use it Lighthouse hosted a panel featuring experts Mark Noel, Director of Advanced Client Data Solutions at Hogan Lovells, Sam Sessler, Assistant Director of Global eDiscovery Services at Norton Rose Fulbright, Bradley Johnston, Senior Counsel eDiscovery at Cardinal Health, and Paige Hunt, Lighthouse’s VP of Global Discovery Solutions.Some of the key themes and ideas that emerged from the discussion include:Defining AIMeeting client expectationsUnderstanding attorneys’ duty of competenceIdentifying critical factors in choosing an AI toolAssessing AI’s impact on process and strategyThe future of AI in the legal industryDefining AIThe term “AI” can be misleading. It’s important to recognize that, right now, it’s an umbrella term encompassing many different techniques. The most common form of AI in the legal space is machine learning, and the earliest tools were document review technologies in the eDiscovery space. Other forms of AI include deep learning, continuous active learning (CAL), neural networks, and natural language processing (NLP).While eDiscovery was a proving ground for these solutions, the legal industry now sees more prebuilt and portable algorithms used in a wide range of use cases, including data privacy, cyber security, and internal investigations.Clients’ Expectations and Lawyers’ DutiesThe broad adoption of AI technologies has been slow, which comes as no surprise to the legal industry. Lawyers tend to be wary of change, particularly when it comes at the hands of techniques that can be difficult to understand. But our panel of experts agreed that barriers to entry were less of an issue at this point, and now many lawyers and clients expect to use AI.Lawyers and clients have widely adopted AI techniques in eDiscovery and other privacy and security matters. However, the emphasis from clients is less about the technology and more about efficiency. They want their law firms and vendors to provide as much value as possible for their budgets.Another client expectation is reducing risk to the greatest extent possible. For example, many AI technologies offer the consistency and accuracy needed to reduce the risk of inadvertent disclosures.Mingled with client expectations is a lawyer’s duty to be familiar with technology from a competency standpoint. We aren’t to the point in the legal industry where lawyers violate their duty of competence if they don’t use AI tools. However, the technology may mature to the point where it becomes an ethical issue for lawyers not to use AI.Choosing the Right AI ToolDecide Based on the Search TaskThere’s always the question of which AI technology to deploy and when. While less experienced lawyers might assume the right tool depends on the practice area, the panelists all focused on the search task. Many of the same search tasks occur across practice areas and enterprises.Lawyers should choose an AI technology that will give them the information they need. For example, Technology-assisted review (TAR) is well-suited to classifying documents, whereas clustering is helpful for exploration.Focus More on FeaturesTeams should consider the various options’ features and insights when purchasing AI for eDiscovery. They also must consider the training protocol, process, and workflow. At the end of the day, the results must be repeatable and defensible. Several solutions may be suitable as long as the team can apply a scientific approach to the process and perform early data assessment. Additional factors include connectivity with the organization’s other technology and cost.The process and results matter most. Lawyers are better off looking at the system as a whole and its features in deciding which AI tech to deploy instead of focusing on the algorithm itself.Although not strictly necessary, it can be helpful to choose a solution the team can apply to multiple problems and tasks. Some tools are more flexible than others, so reuse is something to consider.Some Use Cases Allow for ExperimentationThere’s also the choice between a well-established solution versus a lesser-known technology. Again, defensibility may push a team toward a well-known and respected tool. However, teams can take calculated risks with newer technologies when dealing with exploratory and internal tasks.A Custom Solution Isn’t NecessaryThe participants noted the rise in premade, portable AI solutions more than once. Rarely will it benefit a team to create a custom AI solution from scratch. There’s no need to reinvent the wheel. Instead, lawyers should always try an off-the-shelve system first, even if it requires fine-tuning or adjustments.AI’s Impact on ProcessThe process and workflow are critical no matter which solution a team chooses. Whether for eDiscovery, an internal investigation, or a cyber security incident, lawyers need accurate and defensible results.Some AI tools allow teams to track and document the process better than others. However, whatever the tool’s features, the lawyers must prioritize documentation. It’s up to them to thoughtfully train the chosen system, create a defensible workflow, and log their progress.As the adage goes: garbage in, garbage out. The effort and information the team inputs into the AI tool will influence the validity of the results. The tool itself may slightly influence the team’s approach. However, any approach should flow from a scientific process and evidence-based decisions.AI’s Influence on StrategyThere’s a lot of potential for AI to help organizations more strategically manage their documents, data, and approach to cases. Consider privileged communications and redactions. AI tools enable organizations to review and classify documents as their employees create them—long before litigation or another matter. Classification coding can travel with the document, from one legal matter to another and even across vendors, saving organizations time and money.Consistency is relevant, too. Organizations can use AI tools to improve the accuracy and uniformity of identifying, classifying, and redacting information. A well-trained AI tool can offer better results than people who may be inconsistently trained, biased, or distracted.Another factor is reusing AI technology for multiple search tasks. Depending on the tool, an organization can use it repeatedly. Or it can use the results from one project to the next. That may look like knowing which documents are privileged ahead of time or an ongoing redaction log. It can also look like using a set of documents to better train the algorithm for the next task.The Future of AIThe panelists wrapped the webinar by discussing what they expect for the future of AI in the legal space. They agreed that being able to reuse work products and the concept of data lakes will become even greater focuses. Reuse can significantly impact tasks that have traditionally had a huge cost burden, such as privilege reviews and logs, sensitive data identification, and data breach and cyber incidents.Another likelihood is AI technology expanding to more use cases. While lawyers tend to use these tools for similar search tasks, the technology itself has potential for many other legal matters, both adversarial and transactional. To hear more of what the experts had to say, watch the webinar, “Deploying Modern Analytics for Today’s Critical Data Challenges.” ai-and-analytics; ediscovery-review; lighting-the-path-to-better-ediscoveryai-big-data, blog, data-reuse, project-management, ai-and-analytics, ediscovery-reviewai-big-data; blog; data-reuse; project-managementai-analyticslighthouse
No items found. Please try different search parameters.